Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect
نویسندگان
چکیده
BACKGROUND A thermal tolerant stereo-complex poly-lactic acid (SC-PLA) can be made by mixing Poly-D-lactic acid (PDLA) and poly-L-lactic acid (PLLA) at a defined ratio. This environmentally friendly biodegradable polymer could replace traditional recalcitrant petroleum-based plastics. To achieve this goal, however, it is imperative to produce optically pure lactic acid isomers using a cost-effective substrate such as cellulosic biomass. The roadblock of this process is that: 1) xylose derived from cellulosic biomass is un-fermentable by most lactic acid bacteria; 2) the glucose effect results in delayed and incomplete xylose fermentation. An alternative strain devoid of the glucose effect is needed to co-utilize both glucose and xylose for improved D-lactic acid production using a cellulosic biomass substrate. RESULTS A previously engineered L-lactic acid Escherichia coli strain, WL204 (ΔfrdBC ΔldhA ΔackA ΔpflB ΔpdhR ::pflBp6-acEF-lpd ΔmgsA ΔadhE, ΔldhA::ldhL), was reengineered for production of D-lactic acid, by replacing the recombinant L-lactate dehydrogenase gene (ldhL) with a D-lactate dehydrogenase gene (ldhA). The glucose effect (catabolite repression) of the resulting strain, JH13, was eliminated by deletion of the ptsG gene which encodes for IIBC(glc) (a PTS enzyme for glucose transport). The derived strain, JH14, was metabolically evolved through serial transfers in screw-cap tubes containing glucose. The evolved strain, JH15, regained improved anaerobic cell growth using glucose. In fermentations using a mixture of glucose (50 g L(-1)) and xylose (50 g L(-1)), JH15 co-utilized both glucose and xylose, achieving an average sugar consumption rate of 1.04 g L(-1)h(-1), a D-lactic acid titer of 83 g L(-1), and a productivity of 0.86 g L(-1) h(-1). This result represents a 46 % improved sugar consumption rate, a 26 % increased D-lactic acid titer, and a 48 % enhanced productivity, compared to that achieved by JH13. CONCLUSIONS These results demonstrated that JH15 has the potential for fermentative production of D-lactic acid using cellulosic biomass derived substrates, which contain a mixture of C6 and C5 sugars.
منابع مشابه
Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B
BACKGROUND Polylactic acid (PLA), a biodegradable polymer, has the potential to replace (at least partially) traditional petroleum-based plastics, minimizing "white pollution". However, cost-effective production of optically pure L-lactic acid is needed to achieve the full potential of PLA. Currently, starch-based glucose is used for L-lactic acid fermentation by lactic acid bacteria. Due to it...
متن کاملAnaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways.
Anaerobic glucose oxidation was coupled to xylose reduction in a nonfermentative Escherichia coli strain expressing NADPH-dependent xylose reductase. Xylitol production serves as the primary means of NAD(P)(+) regeneration, as glucose is converted primarily to acetate and CO(2). The membrane-bound transhydrogenase PntAB is required to achieve the maximum theoretical yield of four moles of xylit...
متن کاملEfficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity
BACKGROUND Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic an...
متن کاملExperimental evolution reveals an effective avenue to release catabolite repression via mutations in XylR.
Microbial production of fuels and chemicals from lignocellulosic biomass provides promising biorenewable alternatives to the conventional petroleum-based products. However, heterogeneous sugar composition of lignocellulosic biomass hinders efficient microbial conversion due to carbon catabolite repression. The most abundant sugar monomers in lignocellulosic biomass materials are glucose and xyl...
متن کاملFunctional replacement of the Escherichia coli D-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici.
The microbial production of L-(+)-lactic acid is rapidly expanding to allow increased production of polylactic acid (PLA), a renewable, biodegradable plastic. The physical properties of PLA can be tailored for specific applications by controlling the ratio of L-(+) and D-(-) isomers. For most uses of PLA, the L-(+) isomer is more abundant. As an approach to reduce costs associated with biocatal...
متن کامل